Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.

Identifieur interne : 000E97 ( Main/Exploration ); précédent : 000E96; suivant : 000E98

Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.

Auteurs : Guo-Chang Zhang [États-Unis] ; In Iok Kong [États-Unis] ; Na Wei [États-Unis] ; Dairong Peng [États-Unis] ; Timothy L. Turner [États-Unis] ; Bong Hyun Sung [Corée du Sud] ; Jung-Hoon Sohn [Corée du Sud] ; Yong-Su Jin [États-Unis]

Source :

RBID : pubmed:27240865

Descripteurs français

English descriptors

Abstract

Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+ -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.

DOI: 10.1002/bit.26021
PubMed: 27240865


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.</title>
<author>
<name sortKey="Zhang, Guo Chang" sort="Zhang, Guo Chang" uniqKey="Zhang G" first="Guo-Chang" last="Zhang">Guo-Chang Zhang</name>
<affiliation>
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</nlm:affiliation>
<wicri:noCountry code="subField">61801</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kong, In Iok" sort="Kong, In Iok" uniqKey="Kong I" first="In Iok" last="Kong">In Iok Kong</name>
<affiliation>
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</nlm:affiliation>
<wicri:noCountry code="subField">61801</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wei, Na" sort="Wei, Na" uniqKey="Wei N" first="Na" last="Wei">Na Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, Indiana.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Indiana</region>
</placeName>
<wicri:cityArea>Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peng, Dairong" sort="Peng, Dairong" uniqKey="Peng D" first="Dairong" last="Peng">Dairong Peng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Turner, Timothy L" sort="Turner, Timothy L" uniqKey="Turner T" first="Timothy L" last="Turner">Timothy L. Turner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sung, Bong Hyun" sort="Sung, Bong Hyun" uniqKey="Sung B" first="Bong Hyun" last="Sung">Bong Hyun Sung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Jung Hoon" sort="Sohn, Jung Hoon" uniqKey="Sohn J" first="Jung-Hoon" last="Sohn">Jung-Hoon Sohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yong Su" sort="Jin, Yong Su" uniqKey="Jin Y" first="Yong-Su" last="Jin">Yong-Su Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801. ysjin@illinois.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois. ysjin@illinois.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27240865</idno>
<idno type="pmid">27240865</idno>
<idno type="doi">10.1002/bit.26021</idno>
<idno type="wicri:Area/Main/Corpus">000D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D76</idno>
<idno type="wicri:Area/Main/Curation">000D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D76</idno>
<idno type="wicri:Area/Main/Exploration">000D76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.</title>
<author>
<name sortKey="Zhang, Guo Chang" sort="Zhang, Guo Chang" uniqKey="Zhang G" first="Guo-Chang" last="Zhang">Guo-Chang Zhang</name>
<affiliation>
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</nlm:affiliation>
<wicri:noCountry code="subField">61801</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kong, In Iok" sort="Kong, In Iok" uniqKey="Kong I" first="In Iok" last="Kong">In Iok Kong</name>
<affiliation>
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</nlm:affiliation>
<wicri:noCountry code="subField">61801</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wei, Na" sort="Wei, Na" uniqKey="Wei N" first="Na" last="Wei">Na Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, Indiana.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Indiana</region>
</placeName>
<wicri:cityArea>Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peng, Dairong" sort="Peng, Dairong" uniqKey="Peng D" first="Dairong" last="Peng">Dairong Peng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Turner, Timothy L" sort="Turner, Timothy L" uniqKey="Turner T" first="Timothy L" last="Turner">Timothy L. Turner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sung, Bong Hyun" sort="Sung, Bong Hyun" uniqKey="Sung B" first="Bong Hyun" last="Sung">Bong Hyun Sung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Jung Hoon" sort="Sohn, Jung Hoon" uniqKey="Sohn J" first="Jung-Hoon" last="Sohn">Jung-Hoon Sohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yong Su" sort="Jin, Yong Su" uniqKey="Jin Y" first="Yong-Su" last="Jin">Yong-Su Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801. ysjin@illinois.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois. ysjin@illinois.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetates (metabolism)</term>
<term>Aldehyde Oxidoreductases (genetics)</term>
<term>Aldehyde Oxidoreductases (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Coenzyme A Ligases (genetics)</term>
<term>Coenzyme A Ligases (metabolism)</term>
<term>Ethanol (isolation & purification)</term>
<term>Ethanol (metabolism)</term>
<term>Genetic Enhancement (methods)</term>
<term>Metabolic Engineering (methods)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Signal Transduction (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétates (métabolisme)</term>
<term>Aldehyde oxidoreductases (génétique)</term>
<term>Aldehyde oxidoreductases (métabolisme)</term>
<term>Amélioration génétique (méthodes)</term>
<term>Cellulose (métabolisme)</term>
<term>Coenzyme A ligases (génétique)</term>
<term>Coenzyme A ligases (métabolisme)</term>
<term>Génie métabolique (méthodes)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Transduction du signal (physiologie)</term>
<term>Éthanol (isolement et purification)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
<term>Coenzyme A Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Ethanol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetates</term>
<term>Aldehyde Oxidoreductases</term>
<term>Cellulose</term>
<term>Coenzyme A Ligases</term>
<term>Ethanol</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
<term>Coenzyme A ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Enhancement</term>
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acétates</term>
<term>Aldehyde oxidoreductases</term>
<term>Cellulose</term>
<term>Coenzyme A ligases</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Amélioration génétique</term>
<term>Génie métabolique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD
<sup>+</sup>
-linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27240865</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>2587-2596</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.26021</ELocationID>
<Abstract>
<AbstractText>Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD
<sup>+</sup>
-linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.</AbstractText>
<CopyrightInformation>© 2016 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Guo-Chang</ForeName>
<Initials>GC</Initials>
<AffiliationInfo>
<Affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>In Iok</ForeName>
<Initials>II</Initials>
<AffiliationInfo>
<Affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, Indiana.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Dairong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Timothy L</ForeName>
<Initials>TL</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sung</LastName>
<ForeName>Bong Hyun</ForeName>
<Initials>BH</Initials>
<AffiliationInfo>
<Affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sohn</LastName>
<ForeName>Jung-Hoon</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Yong-Su</ForeName>
<Initials>YS</Initials>
<AffiliationInfo>
<Affiliation>Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801. ysjin@illinois.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois. ysjin@illinois.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000085">Acetates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.-</RegistryNumber>
<NameOfSubstance UI="D000445">Aldehyde Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.10</RegistryNumber>
<NameOfSubstance UI="C027014">acetaldehyde dehydrogenase (acylating)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.-</RegistryNumber>
<NameOfSubstance UI="D003066">Coenzyme A Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.13</RegistryNumber>
<NameOfSubstance UI="C101958">acetate-CoA ligase (ADP-forming)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085" MajorTopicYN="N">Acetates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000445" MajorTopicYN="N">Aldehyde Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003066" MajorTopicYN="N">Coenzyme A Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024861" MajorTopicYN="N">Genetic Enhancement</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Saccharomyces cerevisiae</Keyword>
<Keyword MajorTopicYN="Y">acetate</Keyword>
<Keyword MajorTopicYN="Y">acetyl-coA synthetase</Keyword>
<Keyword MajorTopicYN="Y">adhE</Keyword>
<Keyword MajorTopicYN="Y">co-consumption</Keyword>
<Keyword MajorTopicYN="Y">xylose</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27240865</ArticleId>
<ArticleId IdType="doi">10.1002/bit.26021</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
<li>Indiana</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Zhang, Guo Chang" sort="Zhang, Guo Chang" uniqKey="Zhang G" first="Guo-Chang" last="Zhang">Guo-Chang Zhang</name>
</region>
<name sortKey="Jin, Yong Su" sort="Jin, Yong Su" uniqKey="Jin Y" first="Yong-Su" last="Jin">Yong-Su Jin</name>
<name sortKey="Jin, Yong Su" sort="Jin, Yong Su" uniqKey="Jin Y" first="Yong-Su" last="Jin">Yong-Su Jin</name>
<name sortKey="Kong, In Iok" sort="Kong, In Iok" uniqKey="Kong I" first="In Iok" last="Kong">In Iok Kong</name>
<name sortKey="Peng, Dairong" sort="Peng, Dairong" uniqKey="Peng D" first="Dairong" last="Peng">Dairong Peng</name>
<name sortKey="Turner, Timothy L" sort="Turner, Timothy L" uniqKey="Turner T" first="Timothy L" last="Turner">Timothy L. Turner</name>
<name sortKey="Wei, Na" sort="Wei, Na" uniqKey="Wei N" first="Na" last="Wei">Na Wei</name>
</country>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Sung, Bong Hyun" sort="Sung, Bong Hyun" uniqKey="Sung B" first="Bong Hyun" last="Sung">Bong Hyun Sung</name>
</noRegion>
<name sortKey="Sohn, Jung Hoon" sort="Sohn, Jung Hoon" uniqKey="Sohn J" first="Jung-Hoon" last="Sohn">Jung-Hoon Sohn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27240865
   |texte=   Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27240865" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020